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function. Finally, one obtains 

1 (TrY]~H)l/2]5;,( 1 1" - Y )  (37)  (Fp~) = 7 , - - t - 7 '  ' ' 

which is the result given in (12) with Y = 1/4a = 
F~/EH. 
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Abstract 

A preceding paper reported how to obtain a priori 
quantitative information on the lack of isomorphism 
(LOI), considered as noise corrupting the heavy-atom 
signal in a derivative data set. This related paper initially 
examines how additional a priori information can be 
drawn from the knowledge of the level of LOI. First, 
a corrected estimate of the coefficients necessary for a 
difference Patterson synthesis is derived. An estimate 
of their accuracy is also obtained. Then, individual and, 
independently, shell-averaged figures of merit that can be 
expressed in terms of the phasing power obtained in the 
preceding paper are determined. These afford an early 
estimate of the probable phase error on the heavy-atom 
structure factor. In a second and independent part of the 
paper, a correlation/translation function is proposed for 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

the localization of the heavy-atom site(s). The results, 
bearing on both test and real cases, show that this method 
can be helpful in many situations. 

1. Introduction 

In a preceding paper (Dumas, 1994), from now on 
referred to as I, it was shown that a great deal of 
information can be obtained about the LOI corrupting 
a derivative data set before any heavy-atom sites are 
determined. This second paper is first devoted to drawing 
useful consequences from this knowledge, with regard 
first to re-estimating the best coefficients for a differ- 
ence Patterson synthesis. All notation used in the paper 
is consistent with that used in I or is defined when 
necessary. 
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2. Estimation of the 'best' Patterson 
coefficients and of their quality 

2.1. Previous results by Srinivasan 

Generally, the coefficients used for calculating a dif- 
ference Patterson function are (FpH - Fp) 2 (Rossmann, 
1960). It is well known that this is a crude, approximation 
of F~  for many acentric reflections. Srinivasan (1968) 
and Kalyanaraman & Sdnivasan (1968) tried to improve 
on it by taking for F~ its mean value (F 2). Their 
work made the implicit assumption that the heavy atoms, 
considered as 'corrupting' the Fourier transform of the 
native crystal (Fig. la), are randomly distributed. They 
obtained (in a slightly different but equivalent form) 

(F~) = (FpH - Fp) e + Aa,c(X), (1) 

where X is the reduced variable 2FpFpH/EH [this 
notation is that used by Sire (1959, 1960); Srinivasan 
used half this value] and A~,c(X) is a correction - 
always positive - for, respectively, acentric and centric 
terms. These are given by 

Aa(X) = ZHX{1 --[II(X)/Io(X)]} 
= EH[X - G(X)] (2) 

A t ( X ) -  E H X [ 1 -  tanh (X/2)]. (3) 

When LOI is important, (F~N) and EHN, not merely 
(F  2) and EH, have to be used in (1), (2) and (3). 
Incidentally, the noise component from LOI obeys the 
statistical premises of Wilson statistics more correctly 
than the heavy-atom component does. These results by 
Srinivasan and Kalyanaraman can readily be put into 
practice since, as shown in I, both EH and EHN Can be 
satisfactorily estimated. 

2.2. Estimation of (F~) from (F~N) 

We must account for the fact that we have obtained 
(F~N), and not (F~). From the Parseval theorem, one 
has, on average, 

(F~) = ~H/HN(F~N),  (4) 

with the correction term qOH/HN = EH/(EH + EN) = 
1/(1 + ~N/H) being known from I. Although this cor- 
rection is only valid on average, we have no alternative 
but to use it for each reflection and, thus, 

) = (5) 

Finally, coefficients for an origin-removed Patterson 
function are obtained as (F2H) > --EH. Interestingly, 
qOH/HN = W2/(1 + W2), with W = (~'~H/~']~N) 1/2 
being the phasing power, and thus qOH/HN appears as 
a natural damping factor of the coefficients in shells 
of resolution where the phasing power is low. It was 
verified on a test case with significant LOI that the 
latter estimate for (F~) is slightly better correlated to 
the exact values than the classic estimate (FpH -- Fp) 2 
(not shown). The difference observed on a Patterson 
function calculated with, respectively, exact, classic and 
'dampened Srinivasan' coefficients is shown in Fig. 2. 
Two test cases (already used in I) have been examined 
with medium and high LOI. For medium LOI, no clear 
improvement is obtained, apart from a slight noise 
reduction. On the contrary, for high LOI, a significant 
difference is observed, especially for the Harker section 
z = 1, where the noise reduction is very significant. 
However, as expected, this also results in a loss of 
sharpness due to the damping. Therefore, this Patterson 
synthesis is probably better used in conjunction with the 
classical one, in particular to observe which peaks are 
common to both. 

2.3. Accuracy of (F2): calculation of o'(F 2) 

As a straightforward continuation of Srinivasan's 
work, we calculate the variance of F~r: the smaller this 
variance, the better the estimate of F~  = (F 2)  (or of 
F~/N = ( F2  N)) by (1). We are only concerned here with 
the uncertainty of (F~) of 'geometrical' origin, not with 
the uncertainty due specifically to LOI. 

By definition, 

var (F~ / )=  ( ( F ~ / - ( F ~ ) )  2) 
= (F  4) - ( F 2 )  2. (6) 

FP ~ FH 

(a) (b) 

Fig. 1. Argand diagrams of the different structure factors discussed in the 
text. (a) Influence of heavy atoms 'corrupting' the Fourier transform 
of a macromolecular crystal. (b) Influence of noise originating from 
LOI 'corrupting' the Fourier transform of heavy atoms. 

2.3.1. The case of acentric reflections. (F~r) 2 is known 
from (1) and (F~) can be calculated in exactly the same 
way as used by Srinivasan for (F~) (see Appendix 1 for 
details of calculations). One finally obtains 

a (F~)  = [var (F~/)] 1/2 

= EH[X 2 - G(X) - G2(X)] 1/2. (7) 

The dependence of Aa(X)  on X is shown in Fig. 
3(a). The dependence of the ratio Aa(X)/cr(F 2) on 
X, allowing us to grasp the relevance of the difference 
between the 'corrected' and the 'classical' estimates of 
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F ~ ,  is shown in Fig. 3(b). With consideration of  (2) and 
(7), the latter ratio is given by 

= [X - G ( X ) ]  

X [X 2 -- G ( X )  -- G2(X)] -1/2. (8) 

This function runs from 2112 at X -- 0 to 2-1/2 for large 
X ,  passing through a very weakly marked min imum 
at X _~ 3.59. This result indicates that the correction 
A a ( X )  is of  statistical significance roughly for X lying 
in the range 0-2.  This is rather limited since 

X = 2 F p F p H / E H  ~-- 2 F ~ / E H  = 2 E p / E H ,  (9) 

meaning that X commonly  has a value well above 2. 
As a consequence, the terms (F2) /cr (Fb) ,  which can 
be calculated for every reflection, reduce most  often to 
the following l imiting form corresponding to large X :  

<g~_i>/o(F~_I) - 2 1 / 2 { [ ( g p .  - gp)2/~]~.] -Jr +}. (10) 

2.3.2. The case o f  centric reflections. Calculation of  
( F  4> for centric reflections is performed analogously 
and the result is obtained after easy calculations: 

a ( F ~ )  = [var (F~)]  1/2 

= E H X [ 1  - t a n h  2 (X/2)] 1/2 

= E H X / c o s h  ( X / 2 ) .  (11) 

This allows us to calculate the corresponding ratio 
A c ( X ) / o ' ( F ~ ) :  

Ac(X) /cr(F~i)  = exp ( - X / 2 ) ,  (12) 

which indicates that the correction for centric terms is 
of  very poor quality. 

3. A priori d e t e r m i n a t i o n  of  va r ious  figures of  m e r i t  

The aim of  this section is the calculation of  the probable 
phase error on the heavy-atom structure factors that can 

. . . .  > X . . . .  > X 

EXACT COEFF ICIENTS 

.S 
.3 ,+- 

• 6 / ~  2 

.6 

MEDIuti LOI, CLASSIC COEFFICIENTS 

f,\ 

LARGE LOl, CLASSIC COEFFICIENIS 
I 

i'~ 

/ "~)~/~,\\, z ~ 
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Fig. 2. Comparison of the Harker sections z = 1 for a test Patterson function calculated between 12 and 3 k with: (a) exact coefficients (i.e. 
F~ calculated from heavy-atom coordinates); (~) medium LOI; (c) high LOI. For both (b) and (c), two estimates for the coefficients have been 

F 2 2 compared: the classical estimate [ H (FpH Fp) 2] and the dampened Srinivasan estimate [(F~) ---- - -  = 9 9 H / H N ( F ~ N ) ,  ( 5 ) ] .  The c o n t o u r s  
1 are at 7 e.s.d, from each other and start at 1 e.s.d, of the section. The • (singly numbered) correspond to the self-peaks that should appear in a 

Harker section and the # (doubly numbered) correspond to those cross peaks that happen to fall in the immediate vicinity of this section. The 
grid spacing corresponds to 0.1 crystallographic units. 
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be predicted from our  knowledge of the level of noise 
from LOI. In the mulitple-isomorphous-replacement 
case, this quantity is an important component of the 
usual figure of merit (FOM) derived after an analysis as 
first performed by Blow & Crick (1959). In the single- 
isomorphous-replacement case, the phase is taken as 
the average of the two possible phases qaH + 5qO and 
qO H -- 5qO, qPH being the phase of FH. The FOM, in such 
a case, is thus usually taken as cos 5~. This estimate, 
however, is grossly overoptimistic if ~H is ill known 
and 5~ _~ 0. Such a calculation may thus be of interest 
for obtaining a more realistic weighting in the single- 
isomorphous-replacement case. We will determine both 
a shell-averaged and an individual estimate of this FOM. 
Here, we restrict ourselves to the theoretical aspect and 
additional work is required to practically assess these 
results. 

3.1. Determination of a shell-averaged figure of merit 

We want to estimate rn~ = (cos~}, for acentric 
reflections, with ~ defined as the angle (FH, FHN) (Fig. 
l b). For centric reflections, the analogous quantity is 

zt,(X)/Y, 

0.6 

0.4 

0.2 

0.0 

o ', 
(a) 

ao(X) hr (F2,) 

2w2 

1.00 

0.50 

i I 

3 4 

i i i i 

0 1 2 3 4 X 

(b) 

Fig. 3. (a) Variation of the normalized Srinivasan correction A a (X)  / E H- 
(b) Variation of Aa(X)/a(F2). 

mc = (sign} with sign being the sign of FH relative to 
FH + F N  = FHN. In both cases, the brackets denote the 
average over all possible values of FH and F u suitably 
weighted from Wilson statistics. The horizontal bar 
denotes the average over all reflections in a given shell of 
resolution where E H and Y]N are known approximately 
from I. 

3.1.1. The case of acentric reflections. From Sim's 
(1959, 1960) results, we know that for a given reflection 
(cos~) = II(X)/Io(X),  with X = 2FHFHN/EN. In 
order to perform the second averaging (the ensemble 
average corresponding to the horizontal bar), we need 
to calculate (lt (X) / I0 (X)) and, thus, we need to know 
Pa(XIEH, EN), the density probability of the variable 
X when EH and EN are known. Its calculation, detailed 
in Appendix 2A, gives 

Pa(XIEH,EN) = ~N/HXIo(X)Ko[(1 + ~N/H)I/2x], 
(13) 

with K0 the Bessel function of imaginary argument and 
zeroth order [Gradshteyn & Ryzhik (1980) (from now on 
referred to as GR), pp. 951-952]. Obviously, this result 
is not limited to the pair FH, FHN: it is valid for any 
pair of structure-factor moduli Fs and FST, provided 
that both Fs and FT follow Wilson statistics. Use of 
this expression gives 

oo 
7Tta(qON/H) ---qON/H f XII(X) 

o 
x Ko[(1 + ~DN/H)I/2X]dX, 

which yields (GR, p. 693) 

(14) 

m~(qON/H) = (Tr/4)[qPN/H/(1 + qDN/H) 3/2] 
3. (1 ~ON/H)) (15) × 2F1(3, 7,2; 1/ + 

with 2F1 (o~, t ;  7; z) the hypergeometric function (Niki- 
forov & Ouvarov, 1976, p. 196; GR, p. 1045). If one 
uses the phasing power W as the variable, the latter 
equation reads 

rna(W) = (Tr/4)[W/(1 + W2) 3/z] 

× 2F1(3 3. 3, 5, 2; W2/( 1 + W2)) • (16) 

It is possible to express the hypergeometric function in 
terms of complete elliptical functions but this does not 
seem worthwhile. The variation of ~--E~(W) is shown in 
Fig. 4. 

3.1.2. The case of centric reflections. We want to 
derive mc = (sign}, with sign being the sign of FH 
relative to FH + FN = FHN. For this one-dimensional 
problem, the double averaging can easily be done at once 
by considering all possible values of FH and, for each of 
them, all possible values of FN such that FH(FH + F N )  
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is either positive or negative. This leads to 

m~ = 2 f  Pzu(FH) PzN(FN)dFN 
0 FH 

-- FH ] 
- f P~N (FN)dFN dFH, (17) 

with P ~ n , N  (FH, N) being the Wilson centric distribution 
with variances E H and E N. The factor 2 arises from 
the integration over FH being performed between 0 
and oo instead of between - c ~  and c~. Taking care of 
the normalization of a density probability function, one 
obtains 

3.2.1. The case of acentric reflections. Analogously 
to the previous section, one is led to determin- 
ing Pa(XIEH, ZN,FHN), the density probability of 
X = 2FHFHN/EN when FHN is considered fixed. 
Pa(XIEH, EN,FHN ) is readily obtained from the 
acentric Wilson distribution considering that, for a given 
X, FH must be equal to ENX/(2FHN). Thus, 

Pa(XIEH, EN,FHN ) = 2 a X e x p ( - a X  2) (21) 

with c~ = E2N/(4EHF2N). Interestingly, F2/v, not 
FHN, is required and the known quaritity (F]cN) is 
therefore useful to evaluate a. The individual figure of 
merit is thus obtained as 

mc = 4 f PEH(FH) PzN(FN)dFN dFH. (18) 
0 

The calculations necessary for this integration are de- 
tailed in Appendix 2B; they give 

me(W) =(2/Tr)[W/(1 + W2)] 

3 W2/(1 + We)). (19) x 2Fi(1, 1; 3; 

In this case, a remarkable simplification occurs (see 
Appendix 2B for full details), yielding 

mc(W) = (2/7r) arctan W, (20) 

with W = (Y]H/Y]N) I/2 as the variable. It is worth 
noting the similarity of the two results for ~-~d(W) [(16)] 
and ~--g(W) [(19)], which can both be expressed in terms 
of a hypergeometric function.* The variation of ~-g(W) 
is shown in Fig. 4. 

3.2. Determination of a figure of merit for each reflection 

We turn now to the determination of individual figures 
of merit. 

* Incidentally, one may also stress that the two multiplying factors, 
7r/4 for acentric reflections and 2#r for centric reflections, correspond to 
the respective values of p = (F)2/(F 2) given by Wilson (1949). 

0.8 

o 

? 0.6 

¢~ 0.4 

if) 
0.2 

I 

- -  Centric 

Acentr)c 

2 4 6 8 10 

W 

Fig. 4. Variation of the acentric and centric shell-averaged figures of 
merit ~--E(W) (thick line) and ~--~c (W) (thin line) versus the phasing 
power W. 

OO 

ma(a)  ---- 2o~ f X [ l l ( X ) / l o ( X ) ] e x p ( - a X 2 ) d X .  
o 

(22) 
Contrary to the previous shell-averaged estimate, no 
closed form seems obtainable and the integral must be 
numerically evaluated. 

3.2.2. The case of centric reflections. For centric re- 
flections, we deal again with the average value (sign) of 
the two possible signs of FH relative to Fp.  First, let 
us suppose that EN = 0; it can immediately be shown 
from Woolfson's (1956) result that (sign) = t anhX/2  
if FpH > Fp and (sign) = - 1  if FpH < _Pp. Now, 
if Y]N > 0, the previous result can be used if Fp is 
replaced by IFp -k- FNI and if all possible values of FN 
are properly weighted by the centric Wilson probability 
density. After simple calculations, one obtains 

frna.x 

(sign) =(2teEN) -1/2 f exp(--f2/2EN) 
.f ,~, 

x {1 + tanh [(IF P + flFpH)/EH]}df - 1 
(23) 

with fmin = - - F P  -- FpH and fmax = FpH -- _pp. 
Again, this integral must be evaluated numerically. In the 
particular case where HN ~ 0, the Gaussian weighting 
term is equivalent to the Dirac distribution 6(f) and one 
retrieves correctly the previous result. 

4. Using a correlation function to 
determine heavy-atom positions 

In this second part of the paper, a simple method is 
described whose goal is heavy-atom localization without 
making explicit use of the Patterson function. We state 
clearly that it does not pretend to be a substitute for 
the latter in all cases; however, it is simple and very 
often yields directly the coordinates of at least the major 
site without need for further interpretation. In particular, 
it was successfully used alone for the determination of 
heavy-atom sites of the bleomycin resistance protein 
(Dumas, Bergdoll, Cagnon & Masson, 1994). 
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4.1. Principle of the method 

The method is based on the use of a well known and 
robust tool, namely a correlation function (CF), calcu- 
lated at each point of a grid, between the estimate of F ~  
for each reflection and its calculated value if the heavy- 
atom were located at this point. This is certainly not new, 
since it has been used (or analogously with the classic 
R factor) many times for small molecules. However, to 
our knowledge, it has not been systematically used in the 
field of macromolecules for that purpose, but only as a 
checking tool as in the program PROTEIN (Steigemann, 
1982). The correlation function is defined as 

h 

(24) 

in which the subcripts e and c stand for estimated and 
calculated [b-'~c is in fact a short notation for F ~ ,  (r) ]. 
The position where this function takes its maximum 
value is likely to correspond to a heavy-atom site. In 
fact, it is more convenient to make use of the analogous 
function CE (r) bearing on normalized intensities E ~  = 
F~/~H. This ensures that a single value for E2n~,c 
(ideally 1) is relevant at any resolution, as it should be. 
The results obtained in I (for ~-']~H and ~'-]N) and in this 
paper [(5)] are used for estimating F2e and E2~. 

In fact, CF(r )  is nothing other than the translation 
function as proposed by Fujinaga & Read (1987). It is 
easily shown that it can be understood as the coefficient 
of correlation between two 'origin-removed' Patterson 
functions, namely the one calculated with terms F~/, and 
the theoretical one calculated with terms F/~,. Therefore, 
it is proposed here to use the method of TerwiUiger & 
Eisenberg (1983) not only to refine heavy-atom parame- 
ters but also to try to find at least the major heavy-atom 
site.* 

4.2. Discussion on the discernability of the heavy-atom 
site(s) 

There are clearly two symmetrical drawbacks attached 
to this method. The first one concerns the limited accu- 
racy of the terms F~e and is therefore identical to the 
one attached to a difference Patterson. The second one 
concerns the limited accuracy of the terms F~c owing to 
the assumption that there exists one, and only one, site 
accounting for the whole difference between the terms 

* It should be mentioned, however, that Terwilliger & Eisenberg did 
not use a coefficient of correlation to be maximized but rather a sum of 
squared residuals to be minimized. 

Fp and FpH. We deal in this section with the second 
drawback. 

Let us divide Y]H a priori into two parts: 

EH = EHQ + EHR, (25) 

where the index Q stands for one particular site and R 
for the other sites or, in terms of a model for a translation 
function, for the missing atoms of the model. Clearly, the 
signal-to-noise ratio of the proposed correlation function 
depends critically on the ratio qOO./H = EHQ/EH lying 
between 0 and 1. This can be approximately expressed 
in a quantitative manner with consideration of a result 
of Hauptman (1982) (see also Fujinaga & Read, 1987), 
allowing one to relate CE(r)  to ~OQ/H: 

CE(rQ) ~ ~gQ/H D2' (26) 

where rq  corresponds to the location of the site Q. 
In fact, there is no strict correspondence for the term 
D = (cos(27rh.Ar)),  this only being meaningful in 
the case of a standard translation function with A r  
standing for the coordinate error of the model being 
used. However, it is easy, at least intuitively, to make the 
transposition in the scope of our problem by replacing 
D z by CEmax , the maximum value that can be attained 
by the CF. This maximum value depends on the quality 
of the estimated terms F2e and, therefore, on all kinds of 
errors (including those due to LOI) and on the number of 
centric terms relative to others.* The exact value of this 
maximum is unimportant, only the following relationship 
being meaningful for our purpose: 

CE(rQ) ~ qOQ/HCEmax , (27) 

which states that the sum of the values of the CF at 
the positions of the heavy-atom sites should be constant 
and equal to CEmax. This is verified quantitatively in 
§ 4.4. When put into words, this means that whatever 
the absolute 'strength' of one or several sites, they have 
to 'share a given amount of information'. This clearly 
points to the fact that a weak single site can be as 
distinguishable, or even more so, than several equally 
strong sites (Table 1). 

4.3. Symmetry of the correlation function 

The paper by Hirshfeld (1967), in which is defined 
the so-called 'Cheshire' group of a space group, gives 
all theoretical and practical indications for defining the 

* It might be thought that the term D 2 has another meaning, namely 
that it reflects the error due to grid size in the position of the trial heavy 
atom. This is certainly incorrect as it is assumed in this study that the 
heavy-atom sites are considered at their exact locations. See Table 1 for 
a clear proof of this statement. 
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Table 1. Results of test calculations between 10 and 3 It resolution on the evolution of the value of the CF for one 
to four heavy-atom sites and various relative importances of each 

The heavy atom of the ith site has an occupancy equal to Qi and an isotropic temperature factor equal to Bi (/~2). 920 atoms are 
present in the asymmetric unit, the space group is P212~21 and the cell parameters are a = 50, b = 60 and c = 70A. In column 
Ci are given on each line two values of the CF corresponding to site i. The upper value is the one at the exact site position, the 
lower value is the one at the closest grid pOint from this site. The grid size is 0.75 A (one quarter of the resolution). It is seen that 
there can exist a very significant difference between the two values. In the last column is given the value of the sum of the CF at 
the different sites, which is reasonably, if not exactly, constant. In the last line, the third value (in parentheses) is the theoretical 
one obtained by use of (27) with CEma~ = 0.702: the agreement with the observed value is good. 

Q1,B1 Q~,B~. Q3,B3 Q4,B4 C1 Ce C3 C4 ~_,Ci 

0.3,30 { 0.758 0.583 0.758 

0.5,30 { 0.769 0.618 0.769 

0.7,30 { 0.771 0.661 0.771 

0.9,30 { 0.732 0.531 0.732 

0.3,30 0.3,30 { 0.343 0.366 0.263 { 0.709 0.298 
0.3,30 0.3,30 0.3,30 { 0.243 0.205 0.266 0.155 { 0.162 { 0.251 0.714 

0.3,30 0.3,30 0.3,30 0.3,30 { 0.1060"175 { 0.1300"159 { 0.1750"187 { 0.1120"158 0.679 

{ 0 - 2 5 6 1 " 0 - 1 7 9 { 0 . 1 6 3 { 0 . 1 0 4  
0.3,30 0.3,40 0.3,50 0.3,60 0.172 ,~ 0.149 0.171 0.072 0.702 

(0.249) t. (0.190) (0.147) (0.116) 

new symmetry and new unit cell relevant for the CF. We 
recall here a few important points. All considerations 
on the symmetry of the CF derive from the fact that 
only the Harker vectors are needed for the calculation of 
each F~c.  Therefore, any symmetry operation leaving 
unchanged the set of.Harker vectors will belong to the 
set of symmetries of the CF. In particular, the CF gives 
rise to the same ambiguity of origin as the Patterson 
function. 

It is worth recalling that, at variance with the Patterson 
function, the CF is not always centrosymmetric. This 
stems from the fact that the two constellations of heavy 
atoms corresponding to a generic one at either r q  or 
- r q  are not always the mirror images of each other. 
Indeed, this is the case for all space groups that are their 
own enantiomorph but not for all chiral space groups. 

In such a situation, i.e. for chiral space groups, the 
departure from centrosymmetry can be more or less pro- 
nounced for two opposite reasons. On the one hand, all 
centric reflections will fully contribute to centrosymme- 
try; on the other hand, only those symmetry operations 
responsible for chirality will contribute to the lack of 
centrosymmetry of the resulting CF. As a consequence, 
a group like P41212, with as many as three independent 
centric zones and only four, out of eight, symmetry 
operations responsible for chirality, will produce a weak 
departure from centrosymmetry (see Fig. 5). In contrast, 
a group like P31, with no centric zones and as many 
as two out of three symmetry operations responsible 
for chirality, will produce an important departure from 
centrosymmetry. 

4.4. Results 

4.4.1. Test cases. Numerous test calculations have 
been performed to investigate the intrinsic limitations of 
the method. In particular, the effect of the existence of 
several sites has been examined. Quantitative results are 
given in Table 1. One can effectively verify that, when 
passing from one site to several sites, the values of the 
CF at the different sites sum to approximately the same 
value as stated by (27). Also, the theoretical values of 
the CF at the different sites are in good agreement with 
the observed ones. 

Another important fact emerges from these results and 
concerns the importance of the sampling. Indeed, in the 
present test case it appears very clearly that the usual 
rule of thumb of a grid size equal to one quarter of the 
resolution may not be sufficient. In practice, one may 
perform calculations with such a grid size for the sake 
of saving CPU time, but one should afterwards explore 
the highest peaks in more detail. 

4.4.2. Real cases. Several structures solved in our 
laboratory have been used to test the method. These 
structures represent a significant sample of problems in 
terms of the nature of the molecule (proteins and RNA), 
molecule size (from 14 to 120kDa in the asymmetric 
unit) and space group (C2, C2221, P21212, P212121, 
P41212, P43212, P3121 and P6122). In all but one of 
these cases, the first peak of the CF did correspond to 
a heavy-atom site. 

The method has in particular been successfully used 
to solve all heavy-atom derivatives of the bleomycin 
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resistance protein (space group P41212, a = b = 48.4, 
c - 111.5/~), whose structure was recently determined 
(Dumas, BergdoU, Cagnon & Masson, 1994). It must be 
emphasized that the Patterson function was not neces- 
sary, at any stage, for any of the derivatives. In particular, 
the method proved to be fully efficient in solving a 
europium derivative with as many as six different sites. 
The major site was unambiguously identified as the first 
peak of the correlation map (10-4/~) with height 0.315, 
well detached from the next peak of height 0.25, the 
average and e.s.d, values of the map being 0.047 and 
0.043, respectively (Fig. 5). The position obtained for 
this site was 0.28/~ from the position after refinement. 
All other sites were readily determined by successive 
residual Fourier maps. Refinement of their parameters 
between 12 and 3.3 ,/k resolution (program REFINE from 
the CCP4 package) finally converged to the following set 
of relative occupancies and temperature factors Q1 -- 

6.2, B1 = 5 7 A 2 ;  Q2 -- 2.7, B2 = 92,/k2; Qa = 2.4, 
B3 = 80/~2; Q4 = 1.2, B4 = 27A2; Q5 = 0.9, B5 = 
59/~2; Q6 -- 0.5,/36 = 40/~2. These values allow one to 
roughly estimate the ratio qaQ/n as 0.75. According to 
(27), this gives ca 0.41 as the maximum possible value 
for the CF, which should also be the sum of the values 
of the CF at the different sites. In fact, this value (0.41) 
is significantly lower than the one observed (0.717). 
This discrepancy is certainly the result of errors due to 
LOI but also of those due to a refinement procedure 
that allowed too much freedom in the highly correlated 
occupancies and temperature factors of the different 
sites. This points to a possible improvement of such a 
refinement procedure that would explicitly restrain the 
individual 'strength' of each site to be in reasonable 
agreement with the observed CF value following (27). 

Another very significant test was the one made on 
anti-thrombin III (ATIII), recently solved in our labora- 
tory (Samama, Delarue, Mourey, Choay & Moras, 1989; 
Delarue, Samama, Mourey & Moras, 1990; Mourey, 
1991). This protein crystallizes with a dimer in the asym- 
metric unit in the tetragonal space group P43212, a -- b 
-- 91.3, c = 383/~. One platinum derivative of moderate 
quality was obtained that resisted interpretation by the 
use of the difference Patterson function. It could only 
be interpreted with the use of molecular-replacement 
phases. Retrospectively, one major difficulty was the 
occurrence of several cross peaks in the Harker sections. 
Tests subsequently made with the CF revealed two sites, 
out of five, as the first and the third peaks in the list. 
The second spurious peak had in fact x and y of the 
first site and z of the second site. The heights of the two 
correct peaks were very low: 0.078 and 0.062 (overall 
average = 0, e.s.d. - 0.015). Such low values for a 
correlation coefficient could be considered, at first sight, 
insignificant. They are, however, in agreement with (27) 
because of the significant level of LOI (BN = 2.1/~2; 
see Table 3 of I), which decreases D 2, and of the great 
number of sites, which decreases ~pQ/t-/. It is fair to state 
that probably to a large extent chance allowed the second 
site to emerge out of noise. 

The only case encountered so far that did not give one 
unambiguous major site as the first peak of the CF con- 
cems the gold derivative of one crystal form of tRNA Asp 
from yeast (Moras et al., 1980). tRNA Asp crystallized 
in two independent yet closely related crystal forms A 
and B. The gold induced a substantial LOI owing to 
interconvertibility from form A to a more B-like form 
and its phasing power was rather limited (Comarmond, 
Gieg6, Thierry & Moras, 1986). The values obtained for 

. . . .  > X 

L) 

5___/ 

Fig. 5. Section Z = 0.028 of the CF calculated between 10 and 4/~ resolution for an europium derivative of the bleomycin resistance protein. 
1 X runs from 0 to 1 and Y from 0 to ~ (grid size equal to 0.1 crystallographic units). The first contour is at 2.5 times the e.s.d, of the map 

and the interval between contours is equal to I e.s.d. The quasimirror about the diagonal is clear and corresponds to the weak departure from 
centrosymmetry for a chiral space group like P41212 as discussed in the text. The highest peak at X = 0.26, Y = 0.12 corresponds to the major 
europium site. The difference in height between the correct site and its mirror image about the diagonal is 1.3 times the e.s.d of the map. 
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BN and BH were 1.4 and 90 A 2, respectively (paper I). 
The high BH value is in agreement with the fact that the 
temperature factor for one of the two gold sites could not 
be refined and was held fixed at 100 A 2 during the early 
stage of the solution of the structure. 

APPENDIX 1 
Calculation of (F 4) for acentric reflections 

One can calculate ((F~) n) for any value of n and 
consider the particular case n = 2. Using the binomial 
formula with F 2 = Fg + FgH -- 2FpFpHCOS~ (Fig. 
la), one obtains 

((F~4)n> = X ~ / ~  (--1)kCknZn-kXk(cosk ~> (28) 
k=0 

with Z = (F~ + F~H)/EH and <coskf> to be 
calculated with the probability density p(~) = 
exp(Xcos~)/[27rlo(X)] (Sire, 1959, 1960). Using the 
integral representation of Io(X), 

271" 

2rrI0(X) = f exp (X cos~)d~ (29) 
0 

and, by successive derivations with respect to X, one 
obtains 

FH, is (Sim, 1959) 

P(FHN/FH) =(2FHN/EN)exp[--(F 2 + FHN)/EN] 
x Io(2FHFHN/NN). (34) 

Now, for given FH and X, FHN must be equal to 
2NX/(2FH) and, thus, 

Pa(XI~H,P~N) 
O 0  

= (EN/2) f  P(FH)P(ENX/2FHIFH)dFH/FH 
0 

(35) 

which is easily transformed from (33) and (34) into 

P ~ ( X I ~ ,  ~ u )  =qON/HXIo(X) 
OO 

x f exp ( -  AF~I - B/F~t)dFH/FH 
0 

(36) 

with A = 1/Z,H + 1/2N and B = Z, NX2/4. By making 
the change of variable u = 1/F 2, one obtains 

OO 

f exp ( -  AFt4 - B/F~)dFH/FH 
0 

O 0  

_ 1 f exp ( - A u -  B/u)du/u  (37) 2 
0 

271" 

2?rI~a)(X) - f cos k (~c) exp (X cos ~)d~, (30) 
0 

which, considering the expression for p(~), gives 

(cos k ~) = I(ok)(X)/Io(X). (31) 

We can now go back to the particular case n = 2. First, 
noting that I[~(X) = II(X) and I~(X) = I o ( X ) -  
I : ( X ) / X  and, finally, considering (28) and (31), we 
obtain the result 

((F~) 2) = E~[X  2 + Z 2 - (1 + 2Z)G(X)]. (32) 

and (Prudnikov, Brychkov & Marichev, 1990, p. 344) 

O0 

f U a - 1  exp (-pu - q/u)du = 2(q/p)'~/2K,~[2(pq)a/2]. 
0 

(38) 
In our case, a = 0 and the desired result is obtained as 

Pa(XIY]H, Y]N) = ~N/HXIo(x) 

× K0 [(1 +q~N/H)a/2X]. (39) 

It can be immediately verified that this function is 
correctly normalized to 1 by integrating it between 0 
and o0 (GR, p. 672). 

APPENDIX 2 

A. Calculation of the density probability of X 

We seek to derive the density probability 
Pa(XIEH,EN ) of X = 2FnFHN/EN for acentric 
reflections, FH and FN obeying Wilson statistics. The 
density probability of FH is 

P(FH) = (2FH/EH)exp(--F2 /EH) (33) 

and the conditional density probability of F H N  , given 

B. Calculation of the double integral for centric reflec- 
tions 

One wants to calculate 

me = 4 f  Pr., (FH) Pr.N(FN)dFN dFH. (40) 
0 

By replacing Pr., ( FH ) and Pr.u ( FN ) by their respective 
expressions, one obtains 

me = [2/Tr(XHXN)W2]I(a,/3) (41) 
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with a = 1/(2~H), /3 = 1/~N and 

] I(a,/3) = f e x p ( - a x  2) exp( -~y2)dy  dx. (42) 
0 

The inner integral is expressed by the probability in- 
tegral function /b (GR, p. 930). If one uses its series 
representation (GR, p. 931), I (a ,~)  reads 

oo 

I(a, /3)  = (1//3)f exp (--TX 2) 
0 

oo 

x E [2kX2k+l/( 2k + 1)!!]dX 
k=O 

(43) 

w i t h  X = f l l / 2 x ,  "y = 1 "-~ Ot/f l  and ( 2 k  + 1)!! b e i n g  

equal to the product of all odd numbers up to 2k + 1. 
The Gaussian term, ensuring the absolute convergence, 
authorizes the inversion of summation and integration 
that leads to (GR, p. 337) 

oo oo 

I(a, /3)  = (1//3) E f exp (--TX 9) 
k=0 0 

X [ 2 k x 2 k + l / ( 2 k  + 1)!!]dX 
oo 

= (X/fl) E [2k/( 2k + X)!!](k!/2"yk+l) • 
k=O 

(44) 

After elementary manipulations, this equation is trans- 
formed into 

oo 
I (a ,~)  = (1/2")'/3) E [k!/(k + 1~,].~-42,.j. 

k=0 
(45) 

1 1)! the product of all half-integers from ~ to with (k + 
k-t- ½. The latter is immediately expressed in terms of the 
Euler F function as (k + 1)! = F(3 + k)lF(3)  = (3)k 
where the notation (a) k -- F (a  + k ) /F (a )  has been 
introduced [in particular (1)k = k!]. With this notation, 
the previous equation can be rewritten as 

oo 
3 

= (Ug-y; )E (46) 
k=0 

The infinite sum corresponds to the exact definition of 
3 the hypergeometric function 2F1 (1, 1; 5; 1/7) (Nikiforov 

& Ouvarov (1976), p. 196; GR, p. 1045). one thus 
1/2 obtains, by using W = WH/N as the variable, 

m (w) + 
x2F1(1,1;3;W2/(1 + W2)). (47) 

At this point, a rather fortunate relationship greatly 
simplifies the result. One has 2F1(1, 1; ~;sin 2 qo) = 
¢p/(sin~cosqo) (GR, p. 1041) and, for W = t an~ ,  the 
argument of the hypergeometric function can be exactly 
transformed into sin 2 qa. Transforming sin (arc tanW) 
and cos (arctan W) back into their algebraically equiv- 
alent forms, one finally obtains the remarkably simple 
result 

m~(W) = (2/zr) arctan W. (48) 
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